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ABSTRACT

An overview of various thermodynamic gas cycles working at quantum degeneracy conditions is presented. It is well
known that an ideal gas deviates from its classical behaviour under quantum degeneracy conditions (sufficiently low-
temperature or high-density conditions). Although the gas is still an ideal gas, it obeys Bose-Einstein or Fermi-Dirac
statistics instead of Maxwell-Boltzmann statistics. Under quantum degeneracy conditions, the corrected equation of
state is valid instead of the classical ideal gas equation of state. The corrected equation of state is obtained by
considering the quantum degeneracy of gas particles and it is reduced to classical ideal gas equation of state at the
classical ideal gas conditions (sufficiently high-temperature or low-density conditions). In thermodynamic analyses of
ideal gas cycles, efficiency (except the Carnot efficiency) and work expressions are derived by using the classical ideal
gas equation of state and some generalisations are obtained by using the results of these analyses. Analyses of gas
cycles working with ideal Bose and Fermi gases allow us to investigate how these expressions and generalisations are
effected by the quantum degeneracy. In literature, various gas cycles working with ideal Bose (‘He) and Fermi (‘He)
gases have been thermodynamically analysed at quantum degeneracy conditions. Here, heat, work and entropy
expressions for isothermal, isobaric, isochoric and isentropic processes under the quantum degeneracy conditions are
introduced. The behaviour of Carnot and Ericsson power and Brayton refrigeration cycles working with ideal Fermi
and Bose gas are reviewed by using these expressions. For these cycles, advantage or disadvantage of the use of Fermi
and Bose gases are also given in a brief summary. This overview provides a general picture of the physics of the cycles
working under quantum degeneracy conditions.

KEYWORDS : Ideal quantum gas cycles, Quantum degeneracy, Work, Efficiency, Coefficient of performance.

1. INTRODUCTION

Recently, analyses of quantum heat engines have
become one of the interesting research subjects for the
people working on thermodynamics and statistical
physics. Many works have been made on the finite-time
thermodynamic analyses of various quantum heat
engines in literature [1-14]. Also, equilibrium
thermodynamic analyses of some heat engines working
with ideal Bose and Fermi gases have been worked [15-
21].

In thermodynamic analyses of ideal gas cycles,
efficiency (except the Carnot efficiency) and work
expressions are derived by using the classical ideal gas
equation of state or some other equations based on it.
From the results of these analyses, some generalisations
about the behaviours of gas cycles are obtained [22, 23].
Analyses of gas cycles working with ideal Bose and
Fermi gases allow us to generalise the thermodynamic
models of gas cycles and to investigate how behaviours
of these cycles are effected by the quantum degeneracy
of working fluid.

It is well known that an ideal gas deviates from
classical ideal gas behaviour under sufficiently low-
temperature or high-density gas conditions. This
deviation results purely from the quantum mechanical
degeneracy of gas particles. Therefore, these gas
conditions are called here Quantum Degeneracy
Conditions (QDC). Although the gas is still an ideal gas,
it obeys Bose-Einstein or Fermi-Dirac statistics instead
of Maxwell-Boltzmann statistics. In literature, these
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types of ideal gases are called ideal quantum gases [21].
Under QDC, the corrected equation of state is valid
instead of the classical ideal gas equation of state. The
corrected equation of state contains the quantum
degeneracy of gas particles and it is reduced to classical
equation of state at high-temperature or low-density gas
conditions (Classical Gas Conditions, CGC). Thus, the
corrected equation of state is a more general equation of
state which is valid under both QDC and CGC.

In this work, an overview of thermodynamic
gas cycles working at quantum degeneracy conditions is
presented. The analyses of Carnot and Ericsson power
cycles and Brayton refrigeration cycle working with
ideal Bose (‘He) and Fermi (*He) gases are reviewed
briefly. By using the corrected equation of state,
derivation of heat, work and entropy exchange
expressions for constant temperature, constant volume
and constant pressure processes are introduced. Some
remarkable results relating to thermodynamic analysis of
the considered cycles are given.

2. BASIC CONCEPTS

2.1 Derivation of the Corrected Ideal Gas Equation
of State for a Monatomic Ideal Gas [15-21]
Expressions for number density and pressure of monatomic
ideal Bose and Fermi gases are obtained as follows after
some mathematical manipulations on their general
descriptions [24-27]

n= iﬂ*(ka)}/z Liy, [i exp(,u/ka)] )
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P =%k, T)" Lig, [+ explu/k,T)] ©))

where £, is the Boltzmann’s constant, 7 is gas temperature,
M is chemical potential, Li;(x) is the Polylogarithm function

defined as Li, (x) = »_x'/I7 [28], and % is defined as,

1=1

3

where g is the number of possible spin orientations of a
gas particle, /4 is the Planck’s constant and m, is the rest
mass of gas particles. In equations (1) and (2), the upper
signs are used for Bose gas and the lower signs for
Fermi gas. Corrected equation of state for an ideal gas
can be written as follows by using equations (1) and (2)
P =nk,T CF(u/k,T) “4)
where CF(u/k,T) is called as the correction factor and

it is defined for a Fermi gas as follows
Lig;, [— exp(,u/ka)]
Liy, [_ exp(,u/k,,T)]
For a Bose gas, the number density of particles in equation
(4) should be equal to the number density of particles
having energy greater than the zero translational energy [24-
27]. Hence, the Bose-Einstein condensation should be
considered when the correction factor is defined for a Bose
gas. Consequently, the correction factor for a Bose gas can
be expressed as

CF,(u/k,T)= 3)

Lig z[exp(,u/ka)]
T>T, = CF,(u/k,T)= 2= & 6
>1, = (/U/ ) Li3/2[exp(,u/ka)] (6a)
3/2
T <T,= CF,(u/k,T)=0.5135 (le (6b)

where T, is the Bose-Einstein condensation temperature,
which is defined in terms of pressure, P, as

2/5 2/5
7,(P)=" [ . j (7)
k, \12.612x0.5135
and in terms of number density as
2/3 2/3
7,(n)=" [ 1 j . (7b)
k, \12.612

The quantity of wu/k,T is calculated from
equation (1) implicitly, as a function of (n, 7) or from
equation (2) as a function of (P, 7). Therefore, correction
factor can be determined for given (n, 7) or (P, 1)
parameters.

In the classical gas region, in which the gas
behaves like a Maxwellian gas, the correction factors are
reduced to unity since p <<—k,T . On the other hand, in
the case of completely degenerate gas state, the
correction factor for Fermi gas can be simplified as
2T, n° T
__+__
5T 4T,
where 7, is the Fermi temperature [24-27] and it can be

CF, = (8)

rearranged in terms of P as follows

H. Saygin, sayginh@itu.edu.tr

2/5
1522\ p¥*
T.(P)=| 22— — 9a
o)1) 2 o)
and in terms of » as
/3
37[1/2g1/2 ]2 23
T.(n)= (— —. (9b)
i 42 k,

For the same case, the correction factor for Bose gas can
also be simplified as in equation (6b). The condition for
completely degenerate gas state is ensured when
T << T, (P) for Fermi gas and T <T,(P) for Bose gas.

On the other hand, the conditions for classical gas behaviour
can be expressed as T >>T,(P) for Fermi gas and

T >>T,(P) for Bose gas.

For a constant pressure value, variations of the
correction factors with the temperature are shown in
Figurel. When the temperature is high enough, both of
the correction factors go to the unity. If the temperature
is low enough, the correction factor for Bose gas has the
values lower than the unity and it reaches to the lowest
value (0.5135) when the temperature is equal to the
Bose-Einstein condensation temperature, 7,. 7, is the
lowest temperature for a given pressure. Although the
chemical potential of a Bose gas is restricted by zero,
there is no restriction for the chemical potential of a
Fermi gas. Therefore, the correction factor for Fermi gas
goes to infinity when the temperature goes to zero.
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Figure 1. Variation of the quantities of CF, and CF.
with temperature for a given pressure of 10’ Pa.

In Figure 2, dependence of the correction
factors on the pressure is given for a constant
temperature. For a Bose gas, there is an upper limit of
the pressure and it is determined from equation (7a). For
the pressure values higher than P, the constant
temperature condition is violated [25]. For Fermi gas,
there is no such a limitation.
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Figure 2. Variation of the quantities of CF and CF),
with pressure for a given temperature of 10.53 K.

2.2 Derivation of Heat, Work and Entropy Exchange
Expressions for Common Reversible Processes of
Closed Systems [19]

By using the corrected equation of state, equation (4),
heat, work and entropy exchange expressions for a
monatomic ideal gas can be derived for different
conditions as follows,

i) Constant Temperature Condition
A
0y = mRTB [cr(p,.1)-cF(p.T)]- o (}f»T ) dP}
(10a)

0l = mRTB [cri,.7)-crv, 7))+ jw dV:l

i

(10b)

f
v =it ()-cr(er)- [ EET

(11a)
,
W) :mRTjMdV (11b)
Ty
ro9r
sy == (12)
ii) Constant Pressure Condition
of = %mR[T/CF(P, T, )-1CF(P,T)] (13)
wi-2o; a4
A
S = ng cF(p,7,)-CF(P,T)+ jwﬂ

i
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15)
iii) Constant Volume Condition
0/ = %mR [r.cr(v,r,)-1.cr(v.1) (16)
,
Sy = %mR cF,T,)-CF(v,T)+ Ide
a7)

iv) Constant Entropy Condition
Since the ratio u/T remains constant during an
isentropic process [25], quantum and classical ideal

gases have the same isentropic relations. Therefore,
work expression can be obtained as

PV,-PV., mRCF
N S i const.
S = = T -T 18
! 1-k 1-k r,-) (18

where k =5/3 for monatomic ideal gas and
CF,,, =CF(V,.T,)=CF(y,.T,)

const. 270

= CF(R.T,)=CF(P,.T,) (19)

3. SOME APPLICATIONS ON GAS
CYCLES WORKING AT QUANTUM
DEGENERACY CONDITIONS

3.1 Work Analysis of Carnot Power Cycle [16]

Carnot power cycles working with Bose, Fermi and
classical ideal gases are called Bose, Fermi and classical
Carnot cycles, respectively. Since Carnot efficiency
(17.) is independent from gas properties, net work

outputs of Bose and Fermi Carnot cycles (W3 and W)
can be expressed as W, =n.0, and W, =n.0} .

Therefore, they can be derived by using equation (10b).
By dividing these works to the work of classical Carnot

cycle (W), work ratios are defined as R, =W, /W,
and Rj, =W, /W.. The following expression is

obtained for R, and R}, ,

o Ak=1
. 1 vt CFAT,,
Ry = ln(rvz_l/k—l )|: J j(vH V)dv
+ %[CF]. (T, v, e )-CF, (T, )]} : (20)

Variations of R, and R, with Ty are shown in Figure

3. It is seen that R, and R, go to unity (as can be

expected) for high values of Ty since the quantum
degeneracy becomes unimportant. In this case, working
gas always stays a classical ideal gas throughout the
cycle and correction factors are approximately equal to
unity. Thus, net work output is approximately equal to
that of a classical Carnot cycle for high values of 7. On

the other hand, it can be seen that R, takes the values
greater than unity for some lower values of 7}, whereas
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R, always takes the values lower than unity for all
values of T.
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Figure 3. Variations of R, andR,, versus to Ty.

. B F
Figure parameters V., V., and 7 are chosen as

vy =0.00069 m’kg, vi =0.00067 m’kg and
r=04.

If T,(v,)2T,(v,;) 2T, >T, then, the working
gas is always completely degenerate quantum gas
throughout the cycle. In this case, R, can be simplified
by using equations (6b) and (7b) in equation (20) and by
considering the identity of n=1/vm, as follows,

re 1o, s
Ry =0.5135 1 =. (#2))
In(z" )| T,(v,) | 2

An upper limit for maximum value of R, can
be determined as follows
(R} . = Limit (R} )=12825. (22)

-l
Ty—T(v,)

As shown in Figure 3, R, has a maximum value greater

than unity and lower than the upper limit given by
equation (22).

Under QDC, the use of Bose gas is
advantageous for a Carnot power cycle when Ty is
above a critical temperature value. It is not possible to
give an analytical expression for this critical
temperature. However, it can be numerically calculated
by equalising equation (20) to the unity and solving Ty
value from this equation for given 7, r, and vy values. In
Figure 3, this critical temperature is 25 K for »,=2 and
35 K for r,=6. At the temperatures below this critical
temperature value, the use of Bose gas becomes
disadvantageous. On the other hand, the use of Fermi
gas is always disadvantageous for a Carnot power cycle.
For Carnot refrigeration and heat pump cycles, the use
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of Bose gas still is advantageous since it increases the
pumped heat per cycle for the temperatures higher than
the critical temperature. However, the use of Fermi gas
is still disadvantageous for these cycles since it
decreases the pumped heat per cycle.

3.2 Efficiency Analysis of Ericsson Power Cycle [15]
The Ericsson cycle involves two isothermal and two
isobaric heat exchange processes. Isothermal processes
consist of heat addition (at 7y) and heat rejection (at 7;)
processes between the working gas and heat reservoirs.
Whereas isobaric heat addition (at Py) and rejection (at Py)
processes take place in the regenerator and there is no need
extra heat addition from or rejection to a heat reservoir [22-
23]. When the correction factors are different from the
unity, however, this is not true and the extra heat addition to
or rejection from the regenerator becomes necessary. The
amounts of heats in isothermal processes are also changed
in this case. Hence, the energy balance and so the
efficiencies of Bose Ericsson and Fermi Ericsson cycles are
different from that of the classical Ericsson cycle.

For a Bose Ericsson cycle, the lowest
temperature of the cycle (7}) is restricted by the highest
pressure of the cycle (Py). This restriction results from the
Bose-Einstein  condensation phenomena under the
constant pressure condition. Temperature of the gas (7)
should not be lower than the condensation temperature
(T,), since this case causes violation of the constant
pressure condition. Therefore the lowest value of T} is
equal to 7,(P;) and it can be calculated by means of

equation (7a) as 7" =T,(P,) . Similarly, it is possible
to calculate the highest value of Py for a given value of

T,. This pressure is the Bose-Einstein condensation
pressure (P,) for a given temperature and it is easily
obtained from the equation (7a) as Py = P, (TL ) .

The amounts of total heat input and output of the
cycle depend on the energy balance in the regenerator. The
processes in the regenerator are isobaric processes. For
Fermi and Bose monatomic ideal gases, the specific heat at
constant pressure can be written as follows
c;(T,P)zgRj—T[TxCFj(T,P)]. (23)

The variation of ¢} (T ,P)/ R with the temperature can

be seen in Figure 4 for different pressure value. From
the figure, one can written the followings,

c5(r,p,)>ci(T,P,) (24)

i (T,P,)<ch(T,P,). (25)
By means of the equations (24) and (25), it can be easily
seen that |Q,‘§” | >|Q,‘§L| and |Q,f” | <|Q,§ | When the

temperature is high enough, these inequalities become the
equalities since the correction factors go to unity. This result
can be seen from the equation (13). In this case, heat
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addition to or rejection from the regenerator is not necessary
and the classical Ericsson cycle is obtained.
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Figure 4. Variation of the quantities of cﬁ (P,T )/ R

and le (P , I )/ R with temperature for two different
pressures, (10° and 107 Pa).

In a Bose cycle, heat addition to the regenerator is

necessary since |Q§H|>|Q§, | Thus, the efficiency of

Bose Ericsson cycle can be expressed by using equations
(10a) and (13) as

QB
Ericsson __ 1 T,

= ——zl—T
B B B B
Or, =0, +0r,

PH
S(cry (1, p,) -y (1, )] [ FolTeP) gp
X 2 ?,
Py .
%T[CFB(TL,PL)—CFB(TL,pH N+ dep
PL
(26)

On the other hand, heat rejection from the regenerator is

necessary in a Fermi Ericsson cycle since |Q£H | < |Q§I |

Thus the efficiency of Fermi Ericsson cycle is obtained
by using equations (10a) and (13) as follows

F F F
nEricsson — 1 _ QT/_ + QPI _ QPH

" QTFH =1l-7
51 " CF,(T,,P)
Ei[CFF(THﬂpL)_CFF(TH’PH)]+ IT“IP
‘ P,
s " cF.(1,,P)
E[CFF(TH7PL)_CFF(TH’PH)]+I%dp
PL
27
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If the working gas remains the classical gas
throughout the cycle, it can be easily seen that all the
correction factors go to unity and the efficiencies defined by
equations (26) and (27) go to Carnot efficiency (as
expected).

Variations of the efficiencies of Bose, Fermi
and the classical Ericsson cycles with the temperature
ratio, t, are comparatively shown in Figure 5 for two
different pressure ratios, r, = P, /P, .
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—A— “;"p:G
A 2
= nE,rp:G

0.9 — B g, rp:2

L 08—

0.7 —

06
\ \ \

0.0 0.1 0.2 0.3 0.4
T

Figure 5. Variation of the efficiencies of Bose, Fermi
and the classical Ericsson cycles with the temperatures
ratio, t, for two different pressure ratios. The highest
temperature and pressure of the cycle are chosen as

T,, =77 K and P;=10 Pa respectively.

In this figure, the value of 7, is chosen as 77 K and 1
depends on 7; only. Similarly, the value of P, is chosen
as 10" Pa and different values of r, correspond to
different P; values. At the conditions of
T, >T, >>T, (PH) for Bose cycle and
T, >T, > T, (PH) for Fermi cycle, working gas is

always in the classical gas state throughout the cycle.
Therefore the efficiencies of Bose, Fermi and the
classical cycles are approximately the same,
ne ®Ny =Ny, since the correction factors are very

close to unity. This situation is seen in Figure 3 for high
values of = At the conditions of T, >>T, =T, (PH) for
Bose cycle and {7, >>T. (PH), T (PL)>> T,} for

Fermi cycle, working gas is a classical gas near Ty while
it is a completely degenerate gas near 7. In this case,
the efficiency of Fermi cycle goes to its maximum value
and it can be expressed in the following simple form by
using equations (8), (9a) and (27)

preson Y 2(15Y° 1 PP _plt
o) b
(28)
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Ericsson Y1 _ 4 TF (PH ) 1- rp—2/5
A R )

Although the efficiency of the classical cycle goes to unity
while T goes to zero, the efficiency of Fermi cycle goes to its
upper limit, which is lower than the unity. Equation (29)
describes this upper limit and it is seen in Figure 5. For
Bose cycle, the minimum value of zis restricted by equation
(7a) as 7, =T,(P,)/T, . On the contrary of Fermi cycle,

in this limit case, the efficiency expression of Bose cycle
can not be expressed in a more simple form than the
equation (26). Although 7, continuously increases with

the decreasing 7 value, it is seen that there is a maximum for
1y - Also, order of the efficiencies is that 7, > 1, > 1,

and it is conserved for all values of =

Consequently, it can be said that it is not
always a good method to decrease the lowest
temperature (7;) of the cycle in order to improve the
efficiency. This method is useful if the state of gas is
sufficiently far from the degeneracy state. Moreover,
Bose-Einstein  condensation restricts the lowest
temperature of a Bose cycle for a given value of Py.
Whereas there is no such a limitation in a Fermi cycle.
Additionally, there is no an optimum value for the
lowest temperature in Fermi cycle. However, the
efficiency of a Fermi cycle goes to a finite value lower
than the unity when 7 goes to zero.

3.3 Refrigeration Load Analysis of Brayton
Refrigeration Cycle [21]

It can be easily shown that coefficient of performance
(COP) value of Brayton refrigeration cycle is not
effected by the quantum degeneracy of refrigerant. The
reason of this result is that the correction factor remains
constant during the isentropic change of state.

The refrigeration load ratio can be defined as follows

) o/
Rél_ = é
0

where QF is refrigeration load of the classical Brayton

(30)

cycle. By using equation (13) and isentropic gas
relations and considering that the correction factors are
equal to unity for classical cycle, equation (30) can be
written as

o CF (P, T, )-CF(P,,T, )a}’

J
O 1— 27,13/5 : (€2))

In Figure 6, it is shown that how RSL and RQF,,, depend

on T;. For high values of T}, RS,_ and RgL g0 to unity.

This is an expected behaviour since the refrigerant
becomes classical ideal gas and correction factors go to

unity for high values of 7;. It is seen that RS,_ is always
greater than unity while RgL is lower than unity.

Therefore, refrigeration load of Bose Brayton cycle is
greater than or equal to that of the Classical Brayton
cycle while there is an opposite situation for Fermi
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Brayton cycle, Q; >Qf >Q; . At the temperatures

lower than T,, volume dependence of the pressure of a
Bose gas vanishes and it depends on only temperature.
This situation can easily be seen by using equations (6b)
and (7b) in equation (4). At the temperatures below 7,
therefore, constant pressure condition means the
constant temperature condition. For this reason, in a
Bose Brayton cycle, the minimum value of 7 is
restricted by 7,(P,), which can be calculated by
equation (7b). This restriction is also seen in Figure 4.
On the other hand, there is no such a restriction in case
of Fermi gas. Since Py is taken as a constant, the value
of P, and thus the quantum degeneracy decrease with
increasing value of rp. Therefore, the curves for r, =3
are closer to unity in comparison with the curves for
rp=2.
3.0

B -
o R QL(TL), r=2

N
3

B
[ ] =
Ra (T r,=3

m OJ
o 1.0

bod
3

N
)]
IIIml|IIII|IIII|IIII|IIII|IIII

o
o

2 4 6 8 10 12 14 16 18 20
T (K)

Figure 6. Variations of RSL and RgL versus to 7. The

values of Py and 7 are chosen as P, =10 Pa and

7=0.6.

An increment/decrement in the value of
refrigeration load per cycle corresponds to an
increment/decrement in the value of work input per
cycle since COP value remains constant for a given 7,
value. Thus, in a Brayton refrigeration cycle using a
Bose type refrigerant, more heat is absorbed per cycle
from the cold reservoir by consuming more work per
cycle. On the other hand, in a Brayton refrigeration
cycle using a Fermi type refrigerant, less heat is
absorbed per cycle from the cold reservoir by
consuming less work per cycle. Lifetime of a
refrigerator mainly depends on the mechanical wear.
Mechanical wear increases with increasing number of
cycle. In a real refrigerator, furthermore, lost work also
increases and COP decreases with increasing number of
cycle due to the losses depending on the friction.
Consequently, it can be said that Bose type of ideal gas
is always advantageous for Brayton refrigeration cycle
since the same refrigeration load is obtained with less
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number of cycle. On the contrary, Fermi type of ideal
gas is always disadvantageous because it causes an
increment in the number of cycle for a given
refrigeration load. These results may be used in the
construction of a Brayton refrigeration cycle working at
quantum degeneracy conditions.

CONCLUSION

In summary, by using the results of present analysis in
preceding sections it is understood that the quantum
degeneracy of working gas can lead a decrement in the
efficiency of gas cycles. However, efficiency is not
effected by the quantum degeneracy for the cycles with
four branches, if two of the branches are isentropic. On
the other hand, quantum degeneracy of Bose gas causes
to increment in the net work output or refrigeration load
per cycle while quantum degeneracy of Fermi gas causes
to a decrement in these quantities.
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NOMENCLATURE
cy : Specific heat constant pressure of Bose gas.
ch : Specific heat constant pressure of Fermi gas.
CF : Correction factor for classical ideal gas
equation of state.
CFy : Correction factor for ideal Bose gas.
CFr : Correction factor for ideal Fermi gas.
COP  : Coefficient of performance.
g : Number of possible spin orientations of the
gas particle.
h : Planck’s constant (Js).
k : Specific heat ratio.
ky : Boltzmann’s constant (J/K).
Li : The Polylogarithm function.
m : Gas mass (kg).
m, : Rest mass of the gas particle (kg).
n : Number density of gas particles (m™).
y : Indices representing P, T or V.
P : Pressure (Pa).
Py : The lowest pressure (Pa).
Py : The highest pressure (Pa).
/ : Refrigeration load of the Brayton cycle working j
type gas.
c : Refrigeration load of the classical Brayton cycle.
)i;l : Heat exchange for j type gas at constant Py,
,’;L : Heat exchange for j type gas at constant P;.
Q}H : Heat exchange for j type gas at constant 7.
Q;L : Heat exchange for j type gas at constant 7.
Oy : Heat exchange under constant y property
condition.
T - Pressure ratio defined as r, = P,, /P, .
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ry : Specific volume ratio of the cycle defined as
ro=vy v, .
R : Gas constant (J kg™ K™).
R? : Ratio of work of Bose Carnot cycle to that of
classical Carnot cycle.
R! : Ratio of work of Fermi Carnot cycle to that of
classical Carnot cycle.
S : Entropy (J/K)
Sy : Entropy exchange under constant y property
condition.
Tr : Fermi temperature (K).
Ty : The highest temperature (K).
T : The lowest temperature (K).
T, : Bose-Einstein condensation temperature (K).
v : Specific volume (m™ kg).
Vi : The highest specific volume (m™ kg).
VL : The lowest specific volume (m” kg).
W : Cycle work of Bose Carnot cycle (J).
We : Cycle work of classical Carnot cycle (J).
Wg : Cycle work of Fermi Carnot cycle (J).
wy : Work exchange under constant y property
condition.
e : Carnot efficiency.
nyes" . Efficiency of Ericsson power cycle working
with ideal Bose gas.
nEes" . Efficiency of Ericsson power cycle working
with ideal Fermi gas.
y7, : Chemical potential of a gas particle (J).
T : Temperature ratio defined as 7 =T, /T, .
Sub/superscript
f : Refers to final state.
i : Refers to initial state.
j : Refers to Bose or Fermi gas.
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