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ABSTRACT

There is an attractive force between two parallel neutral conducting plates at a distance d, even at absolute zero
temperature and no matter is present in the gap separating them. This effect is called the Casimir effect and it is due to
the quantum vacuum fluctuations of the zero point electromagnetic field. At finite temperatures (T # 0 K), pressure and
also the other thermodynamic properties become temperature dependent besides the distance d. Hence, it is
theoretically possible to design some heat engines based on the Casimir effect at finite temperature. In this work,
thermodynamic analysis of a Carnot heat engine based on the Casimir effect at finite temperature is aimed to
understand the thermodynamic structure of this kind of machines. Two parallels, neutrals, perfectly conducting plates
are considered as a heat engine device. For low (T, = nhc/k,d >>T, >T,) and high (T, >T, >>T,) temperature

limits, heat and work exchange expressions for isothermal, isobaric, isochoric and isentropic processes are derived by
taking the Casimir effect into account. It is seen that working fluid is the classical (three-dimensional) black-body
radiation (BBR) at high temperature limit, while it is two-dimensional BBR at low temperature limit. By using the
derived expressions, maximum work and maximum work density of a Carnot power cycle are calculated. Numerical
results are compared at both high and low temperature limits. It is shown that maximum work at low temperature limit,
at which the Casimir effect becomes dominant, is much less than the maximum work at high temperature limit. On the
other hand, opposite of this situation is valid for maximum work density. These results provides to understand the
behaviours of heat engines based on the Casimir effect and they can also be used if such heat engines based on the
nano-technology are designed in the near future.

KEYWORDS

Casimir effect, Heat engines, Quantum vacuum, Zero point energy, Nano-technology.

The Casimir effect is verified by the various
1. INTRODUCTION experiments [1,4]. Although this pressure is about 10

atm at a separation of 100 nm, it is about 1 atm at 10
nm. Thus, this effect becomes important especially in
micron and submicron structures and so in mesoscopic
science and nano-technology. In a rectangular or
spherical cavity surrounded by perfectly conductive
surface, Casimir force becomes repulsive [6-9].
Therefore, the direction of this force depends on the
geometry of the cavity.

At finite temperatures (7 # 0 K), the pressure
and also the other thermodynamic properties become
temperature-dependent  besides  the distance d.

There is an attractive force between two parallel neutral
conducting plates even if temperature equals to absolute
zero and the gap separating them is empty. This effect,
which is called the Casimir effect, arises from the
quantum vacuum fluctuations of =zero point
electromagnetic field [1-3]. The empty space between
the plates is filled zero point electromagnetic field in all
wavelengths and the value of maximum wavelength is
limited by two times of the distance between the plates.
Therefore, an energy difference occurs between the
inner and outer regions of the plates. This energy

difference causes a negative (attractive) pressure, which
is given by
2
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where d is distance between the plates, 7 is the reduced
Planck’s constant and ¢ is the speed of light in vacuum
[1,2,4,5]. The energy of the system constituted by plates
is also given as
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Therefore, theoretically it is possible to design some
heat engines based on the Casimir effect at finite
temperature. Recently, thermodynamics of the vacuum
and engine cycles based on the Casimir effect have
become an interesting research subjects for scientists
who are interest in both thermodynamics and quantum
theory of vacuum [3-5,10].

In this work, thermodynamic analysis of a
Carnot heat engine based on the Casimir effect at finite
temperature is made to understand the thermodynamic
structure of this kind of machines. Two parallel neutral
perfectly conducting plates are considered as a heat
engine device.
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2. HEAT ENGINES BASED ON THE
CASIMIR EFFECT AT FINITE
TEMPERATURE

A simple heat engine based on the Casimir effect at finite
temperature is shown in Figure 1. One of the plates is fixed
and the other is axially mobile. The value of surface area of
the mobile plate, 4, takes the values between the high, A,
and low, A4;, area values. Surface area of the fixed plate is
Ap. Therefore, both surface area and distance between the
plates can be changed.

Mobile
conductive plate
with variable

surface area A

Ny

7

d Fixed
conductive
plate with
surface area AH

Figure 1: A simple heat engine based on the
Casimir effect at finite temperature.

Because of the conservative nature of the
electromagnetic field, net work output of a heat engine
based on the Casimir effect at zero temperature (7=0)
equals to zero [3]. Work is consumed on the system
against the lateral forces to decrease the surface area, 4
and against the normal forces to increase the distance d.
This causes the energy of the system given by equation
(2) to increase. This process corresponds to compression
process. On the contrary, when the surface area, 4
increases and the distance, d decreases, the work is
produced by the system. This causes energy of the
system to decrease. This process corresponds to
expansion process. Consequently, since the consumed
and produced works equal to each other, net work
output equals to zero in a cyclic process for 7=0.

To obtain a positive net work output, it is needed
to another parameter effecting the Casimir pressure.
Dielectric constant of the plates and temperature of the
inner region between the plates are this kind of parameters.
If the conversion of heat energy to mechanical energy is
required, the suitable parameter is temperature. As
mentioned above, Casimir effect depends on the
temperature of the region between plates. Therefore,
positive net work output can be obtained by operating
different parts of the cycle at different temperatures. This
type of a machine is a heat engine based on the Casimir
effect at finite temperature. It is possible to design many
different heat engines based on the Casimir effect in
different geometry.
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To understand the thermodynamic structure of
heat engines based on the Casimir effect, a Carnot heat
engine of this type is examined in this work.

2.1 Physical principle of the operation of a Carnot
heat engine based on the Casimir effect at finite
temperature

If there is one conductive plate with temperature, 7, in
empty space, it radiates in all wavelengths of thermal
spectrum. If a second parallel conductive plate is
brought to the distance, d, from the first plate,
electromagnetic emissions in wavelengths longer than
2d are forbidden in the inner region between the plates.
Therefore, a pressure difference occurs between the
inner and outer regions. This means that net pressure is
negative and the plates being attracted to each other.
The total energy of electromagnetic waves in forbidden
wavelengths is equal to the energy corresponding to the
work done by negative pressure when the second plate
is brought from infinity to distance d. For this reason, to
increase the distance d, a work is done on the system.
The increment of d causes a decrement in the number of
forbidden wavelengths and the consumed energy on the
system is used to re-create the electromagnetic waves in
forbidden wavelengths. Similarly, to decrease the
surface area of the plates, an amount of energy is
consumed. This consumed energy is used to re-create
the electromagnetic waves forbidden wavelengths in the
region becoming unconstrained.

Consequently, there are two ways to make a
work exchange with the system. One is to change the
distance d and the second is to change the surface area 4.

There are two asymptotic operation limits,
namely low and high temperature limits. In the low
temperature limit, the forbidden wavelengths constitute
the significant part of the spectral energy distribution.
Electromagnetic emissions, which are normal direction
to the plates, are forbidden almost completely. This
means that two-dimensional BBR emission takes place
in this case. In the high temperature limit, the forbidden
wavelengths constitute the insignificant part of the
spectral energy distribution. Practically, the emission of
BBR takes place in three-dimension in this case.

3. DERIVATION OF HEAT AND WORK
EXCHANGE EXPRESSIONS DUE TO
THE CASIMIR FORCE AT FINITE
TEMPERATURE

Some thermodynamic properties of a system consisting
of two perfectly conductive parallel plates effected by
the Casimir force have been derived in literature [11]. If
a critical temperature is defined as
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thermodynamic quantities can be expressed by
approximate analytical functions for low (7<<T¢) and
high (7>>T.) temperature limits after some
mathematical manipulations [11]. To ignore the lost
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work due to external pressure, it is assumed that
external pressure is equal to zero. Therefore, outer
region of the plates is a vacuum with zero temperature
(T=0) although the inner region between the plates is a
vacuum at finite-temperature (7 #0). Since the
temperature of outer region is assumed to be zero,
pressure, energy and entropy expressions are obtained
for T<<T¢ as follows respectively,
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where £(x) is the Riemann zeta-function defined as
ZI/ n* and 5(3)51.202. Equation (4) represents the
n=1

zero temperature Casimir pressure. Thus, it is understood
that the pressure of BBR in the inner region is negligible in
comparison with the zero temperature Casimir pressure
when 7<<T¢. The first term in equation (5) results from
the work done by zero temperature Casimir force while the
plates come from the infinity to distance d. In other word, it
represents the zero temperature Casimir potential energy
and it can be obtained by integrating the equation (4) from
d to infinity. It can be interpreted that the second term in
equation (5) represents the energy of 2D-BBR in the inner
region. To verify this interpretation, the following way can
be used.

For 3D-BBR, the energy is calculated by [12]

_ 2 cpd’p
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where V' is volume of the considered space, p is the
momentum of a photon and d’p is the volume of
differential momentum space. The factor of 2 results
from the fact that there are two possible transverse
polarization states of an electromagnetic wave in 3D.

Using the identity of d’p — 47p°dp and introducing
x =cp/k,T , equation (7) becomes,
8k, TG xdx T’k 4

- - VT
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Equation (8) is a well-known expression for the energy of
BBR in 3D [12]. To calculate the energy of 2D-BBR, it
should be noticed that there is only one possible
transverse polarization state of an electromagnetic wave
in 2D since it is not possible to rotate an electrical field
vector in 2D. Modifying equation (7) by using this fact
and the identity of d’p — 27pdp , the energy of 2D-
BBR can be obtained as,

© 2
U=4 12j cpdp (92)
(27h)* § exp(cp/k,T) ~1
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Equation (9b) is the same with the second term in
equation (5). Therefore, it is understood that
temperature  dependent thermodynamic properties
caused by the Casimir effect at finite temperature
originates from the thermodynamic properties of 2D-
BBR. Equation (6) also represents the entropy of 2D-
BBR. It can be derived by using the similar way in the
derivation of energy of 2D-BBR.

For T>>T., pressure, energy and entropy
quantities are given as the following forms under the
zero external temperature assumption

274
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Equations (10)-(12) are the classical expressions of 3D-
BBR [12]. Therefore, it is seen that thermodynamic
properties of the system consist of the thermodynamic
properties of 3D-BBR when 7>>T.

By using equations (4)-(6) and (10)-(12), heat
and work exchange expressions can be derived for
isothermal, isobaric, isochoric and isentropic processes
at low and high temperature limits as follows:

i) Isothermal Process (T is constant)
o For 7<<T¢:

Q¢=§%%§T%®—4) (13)
otk )
o For I>>T¢:

0, = :;23/2{ T*(4,d, - 4d,) (15)
%=£%%W@Mrﬂi) (16)

ii) Isobaric Process (P is constant)
e For 7<<T¢:

In this case, d is also a constant due to equation (4).
Heat exchange expression is

37
:%%I(MTMHTMA). (17)
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In case that both 4 and T are variable, the relation
between 4 and T should be known since Qs depends on
this relation. Therefore, O, is calculated by equation
(17) when A(T) is known. On the other hand, it is
possible to give a solution for two simple case:
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If A is a constant, then

E(3)k;
Wy=0 (19)
If T'is a constant, then
3 &0k,
1 3k,
i :E”;z)cg T3(A,»—A,.) 2D

o For I>>T¢:

In this case, T is also a constant due to equation (10).
Therefore equations (15) and (16) are valid for heat and
work exchange expressions respectively.

iii) Isochoric process (V=Ad is constant)

Wy=0 (22)
o For 7<<T¢:

_5(3)1‘71? A(T3 T3) 23
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o For I>>T¢:
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iv) Isentropic process (S is a constant)
Q=0 (25)
o For T<<T.:

In this case, the quantity of 47° is a constant due to
equation (6).

£k m{l_ i} e’ {A_A;J

T A4, 120 \ &
(26)
e For 7>>T¢:
In this case, the quantity of T°A4d is a constant due to
equation (12).
274
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4. THERMODYNAMIC ANALYSIS OF A
CARNOT POWER CYCLE BASED ON
THE CASIMIR EFFECT AT FINITE-
TEMPERATURE

T-S diagram of a Carnot power cycle is shown in Figure 2.
Since the Carnot efficiency is independent from the
physical properties of working fluid, efficiency remains
unchanged.  Therefore, net work  output is

W = Qan = Q2377¢- .

A. Sisman, sismanal@itu.edu.tr

T,
2 3
TH -
w
TL B <
1 4
..
o

Figure 2: 7-S diagram of a Carnot power
cycle.

By using equations (13) and (15) for Q,;, maximum work
and maximum work density are obtained for low and high
temperature limits as follows:

o Case I: Low temperature limit (Ty<<T¢)

The condition of Ty<<T. restricts the maximum
distance between the plates, dy, as d,, << zhc/k,T,, . If
Ap is defined as a parameter for low temperature limit,
one can write d, = A, aic/k,T, and A <<l. Using
equation (13), one can write
_ 30k,
2 ah’c?
By considering equations (6) and (13), it is seen that
A, <A, < A,, 4, < A, and A,T; = A,T}. Since 4, is
the lowest area while 4, is the highest one, they can
symbolized as 4, = 4, and 4, = A, . Thus, equation
(28) becomes

3
w2 &6 )kg T, (73 -~ ij(l -7) (29)

C 2 gk

w T (4, - 4,)n, (28)

where r, is area ratio defined as r, = 4,, /A4, and 7is
temperature ratio defined as =T, /T, . According to

equation (29), W reaches to its maximum value when r,
goes to infinity and 7 goes to 3/4. This maximum is the
ultimate value of W. Therefore, maximum work is
81 Sk, s
Wi =—— T,A4,. 30
Max 512 7fh262 H*“"H ( )

If maximum work density, ()

v » 18 defined as

maximum work per maximum volume, (/) v 1S

W 81 EBk, T
Wi =5 =515 ég )3 RN
nay 7°h’c’ A

€2

e Case II: High temperature limit (T;>>T¢)

The condition of 7;>>T. leads to the condition of
d, >> ahc/k,T, . If Ay is defined as a parameter for
high temperature limit, one can write
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d, = Ay mhc/k,T, and Ayz>>1. Using equation (15),
work is expressed as

4r’k;)
W=—>"Ti(,-V. 32

45730 H( 3 2)77c (32)
where V' is the volume defined as V'=A4d. According to
equations (12) and (15), one can write that
V,<V,<V,, V,<V, and V,T; =V,T;. Since V, is
the lowest volume while V, is the highest one, they can
symbolized as V, =V, and V, =V, . Therefore,
equation (32) can be re-written as

ar’k) ., , 1

=—>=T,V -—— -7 33

45nic ry (1-7) 33)
where ry is volume ratio defined as r, =V, /V, . The
condition for maximum possible work is the same with
that of equation (29), r — o and 7-—>3/4.
Consequently, maximum work for high temperature
limit is

37k,
Wiee =———2T V. 34
Max 320h3c3 H" H ( )

(Wd ) vae 1S €asily obtained from equation (34) as

Wy 37°k,
7)) ='jfL;::§§6£3i;7ﬁ (3%5)
H

To give an idea about the magnitute of
maximum work and maximum work density, numerical
results are obtained for low and high temperature limits
by choosing the values of Ty and 4, as T;=1000 K and
A;=1 m’. By using equation (31), maximum work
density and maximum distance at low temperature limit
are obtained in term of A as

(Wd )Max = % [,uJ/m3] (36)
d, =72004, [nm] (37)

Therefore, maximum work is calculated by using
equations (36) and (37) as

Wi = W,) e Ay =0.160J (38)

If A is taken as A;=0.01, then equations (36) and (37)
give the following results

14 = 2200 pJ/m’ (39)
d ) Max
d, =72nm (40)

Similarly, by using equation (35), maximum
work density at high temperature limit are calculated as

(7, ) e =106 [t /] (D)
By considering d, = A,7hc/k,T, and noting that
7 =3/4, the minimum distance, d;, is expressed in term
of Ay as
d, = 96034, [nm] (42)
If Ay is taken as Ay=100, then equation (42) give the
following result

d, =960 um (43)
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In this case, there is no any limitation on dy. If dy=1m,
then maximum work is obtained by equation (41) as

Wi = W,) e Ay =106 1 (44)

5. CONCLUSION

Heat and work expressions derived in Section 3 can be
used to establish the thermodynamic models for other
cycles (like as Brayton, Otto, etc.) based on the Casimir
effect.

By considering the results obtained in this work,
it can be said that the heat engines based on the Casimir
effect can barely produce the net work output per cycle in
nJ or pJ scale even for the most ideal case. Temperature
dependent thermodynamic properties of the Casimir effect
results from the thermodynamic properties of BBR.
Therefore, working gas consists of BBR. Low temperature
properties of the Casimir effect deal with 2D-BBR while
its high temperature properties deal with 3D-BBR. The
energy density of BBR is too small at common
temperatures, in comparison with the ordinary gases. Thus,
net work output of a heat engine based on the Casimir
effect is too small than that of the engine working with
ordinary gases. For this reason, they do not seem to be used
for macro scale power production.

From equations (31) and (35), it is seen that
work density depends on the parameter A besides T} in
low temperature limit while it depends on only 7y in
high temperature limit. Therefore, it is possible to
increase the work density by decreasing the value of A
when the engine is designed to operate in low
temperature limit. This property provides an advantage
when the work density is important. On the other hand,
if the net work output is important, the engine should be
designed to operate in high temperature limit. Because,
as can be seen by comparing the equations (38) and
(44), net work output in low temperature limit is much
less than the net work output in high temperature limit.
In high temperature limit, however, distance between
the plates is too large in comparison with the distance in
low temperature limit.

Consequently, it seems that the heat engines
based on the Casimir effect promise to produce only
micro-scale power production even if some of their sizes
(such as surface area) in macro-scale. However, analyses
of such heat engines provide an insight about the physical
details of working mechanism of this kind of engines.
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