H. Saygin
5 september
16h00
(Abstract 82)
|
AN OVERVIEW OF THERMODYNAMIC GAS CYCLES WORKING AT
QUANTUM DEGENERACY CONDITIONS
|
H. Saygin1, 2
and A. Sisman2
1 Istanbul Technical University, Informatics Institute, 80626-Maslak, Istanbul,
Turkey
2 Istanbul Technical University, Nuclear Energy Institute, 80626-Maslak, Istanbul,
Turkey
An overview of various thermodynamic gas cycles
working at quantum degeneracy conditions is presented. It is well known
that an ideal gas deviates from its classical behaviour under quantum
degeneracy conditions (sufficiently low-temperature or high-density
conditions). Although the gas is still an ideal gas, it obeys
Bose-Einstein or Fermi-Dirac statistics instead of Maxwell-Boltzmann
statistics. Under quantum degeneracy conditions, the corrected equation
of state is valid instead of the classical ideal gas equation of state.
The corrected equation of state is obtained by considering the quantum
degeneracy of gas particles and it is reduced to classical ideal gas
equation of state at the classical ideal gas conditions (sufficiently
high-temperature or low-density conditions). In thermodynamic analyses
of ideal gas cycles, efficiency (except the Carnot efficiency) and work
expressions are derived by using the classical ideal gas equation of
state and some generalisations are obtained by using the results of
these analyses. Analyses of gas cycles working with ideal Bose and Fermi
gases allow us to investigate how these expressions and generalisations
are effected by the quantum degeneracy. In literature, various gas
cycles working with ideal Bose (4He) and Fermi (3He)
gases have been thermodynamically analysed at quantum degeneracy
conditions. Here, heat, work and entropy expressions for isothermal,
isobaric, isochoric and isentropic processes under the quantum
degeneracy conditions are introduced. The behaviour of Carnot and
Ericsson power and Brayton refrigeration cycles working with ideal Fermi
and Bose gas are reviewed by using these expressions. For these cycles,
advantage or disadvantage of the use of Fermi and Bose gases are also
given in a brief summary. This overview provides a general picture of
the physics of the cycles working under quantum degeneracy conditions.
|
|
|
I.K. Smith
5 september
16h00
(Abstract 27)
|
PROSPECTS FOR ENERGY CONVERSION EFFICIENCY
IMPROVEMENTS BY THE USE OF TWIN SCREW TWO-PHASE EXPANDERS
|
I.K. Smith and N. Stosic
Centre for Positive Displacement Compressor Technology,
School of Engineering, City University, London, EC1V 0HB, U.K.
The development of two-phase expanders with adiabatic
efficiencies of more than 70% has been the goal of many research workers
for more than 30 years. The applications for such devices are almost
exclusively for power recovery from low temperature heat resources. The
inherently poor conversion efficiencies associated with low temperature
energy conversion implies that such expanders must be cheap to be
economically viable.
This paper describes the results of a long term R and D programme
carried out at City University, London, which has resulted in the
development of twin screw machines of great simplicity which have
expansion efficiencies greater than 70% and which can be manufactured at
low cost.
Two applications are given for these.
The first is in a high efficiency system for the recovery of power from
low temperature sensible heat sources, such as liquid geothermal brines.
The second is as a throttle valve replacement in large refrigeration and
air conditioning plant where a device called an "Expressor"
has been developed by the authors. This combines power recovery from the
two-phase expansion and recompression of part of the vapour formed
during the expansion in a self driven sealed unit containing only a
single pair of rotors. Manufacturers’ cost estimates for batch
production of expressor units are indicate that simple payback times for
them are less than six months
Details are given of both analytical and experimental work on both
expander and expressor units.
|
|
|
A. Sisman
5 september
16h20
(Abstract 83)
|
THERMODYNAMIC ANALYSES OF HEAT ENGINES BASED ON THE
CASIMIR EFFECT AT FINITE TEMPERATURE
|
A. Sisman 1
and H. Saygin 1,2
1 Istanbul Technical University, Nuclear Energy Institute, 80626-Maslak, Istanbul,
Turkey,
2 Istanbul Technical University, Informatics Institute, 80626-Maslak, Istanbul,
Turkey
There is an attractive force between two parallel
neutral conducting plates at a distance d, even at absolute zero
temperature and no matter is present in the gap separating them. This
effect is called the Casimir effect and it is due to the quantum vacuum
fluctuations of the zero point electromagnetic field. At finite
temperatures ( K),
pressure and also the other thermodynamic properties (like as entropy,
energy and etc.) become temperature dependent besides the distance d.
Hence, it is theoretically possible to design some heat engines based on
the Casimir effect at finite temperature. In this work, thermodynamic
analysis of a Carnot heat engine based on the Casimir effect at finite
temperature is aimed to understand the thermodynamic structure of this
kind of machines. Two parallels, neutrals, perfectly conducting plates
are considered as a heat engine device. For low ( )
and high ( )
temperature limits, heat and work exchange expressions for isothermal,
isobaric, isochoric and isentropic processes are derived by taking the
Casimir effect into account. It is seen that working fluid is the
classical (three-dimensional) black-body radiation (BBR) at high
temperature limit, while it is two-dimensional BBR at low temperature
limit. By using the derived expressions, maximum work and maximum work
density of a Carnot power cycle are calculated. Numerical results are
compared at both high and low temperature limits. It is shown that
maximum work at low temperature limit, at which the Casimir effect
becomes dominant, is much less than the maximum work at high temperature
limit. On the other hand, opposite of this situation is valid for
maximum work density. These results provides to understand the
behaviours of heat engines based on the Casimir effect and they can also
be used if such heat engines based on the nano-technology are designed
in the near future.
|
|
|
N. Mugabi
5 september
16h20
(Abstract 42)
|
DEVELOPMENT A HIGH-EFFICIENT SLURRY ICE GENERATION AND
TRANSPORTATION SYSTEM USING A NATURAL REFRIGERANT
|
N. Mugabi1,
A. Machida1,
H. Fukumoto1,
M. Fukamura1,
Y. Takeda2,
K. Sanno2
1 Mayekawa Mfg. Co. Ltd. Advanced Technology Lab.,2000, Tatsuzawa, Moriya Machi Kitasooma-gun, Ibaraki, 302-0118, Japan
Tel : 81- 297-48-1364, Fax : 81-297-48-5170
2 Kansai Electric Power Co. ,Technical Research Center, 3-11-20 Nakoji, Amagasaki, Japan.
Ice thermal storage systems are being developed and
marketed as one of the means of electric load levelling . Conventional
ice thermal storage systems are of static type. These systems are
reported to have bad responses to heat load and require big pipings to
deliver cold heat. This makes initial investment and running costs high.
Dynamic Ice systems have been developed to offset some of the
disadvantages of the conventional static systems. Dynamic ice is mainly
produced by using brine solutions. These solutions not only lower the
solidification temperatures , thus lowering COPs, most of them are not
friendly to the environment.
We have developed a highly efficient slurry ice
generation and transportation system using both environmentally friendly
ammonia as the refrigerant and water as the coolant. Water is super
cooled to –1.5°C before its delivered to a super cool releaser where
slurry ice is produced. By using water, the COP is not only improved as
compared with brines, the application range of the system widens from
air conditioning to cover other areas such as the food industry and
machinery.
This paper reports on the development and application
of a 66kW cooling capacity system with a COP of 3.5.
|
|
|
T. Wisniewski
5 september
16h40
(Abstract 71)
|
ULTRASONIC SENSOR FOR HELIUM CONTENT IN A GAS MIXTURE
|
W. Bolek, E.
Slifirska and T. Wisniewski
Institute of Power Engineering and Fluid Mechanics, Wroclaw University
of Technology,
ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
email : tadewis@pwr.wroc.pl
There exists a need to measure the content of a gas mix
called trimix, which is composed of three components : helium, oxygen
and nitrogen. Trimix is used for breathing in hyperbaric exposures.
The main difficulty in measuring this gas is that there are no simple
devices available on market, which allows measuring concentration of
helium or nitrogen.
The thermodynamic state of a three component mixture is given by four
values: e.g. two thermodynamic quantities and concentration of two components.
This state might be also given as three independent thermodynamic quantities
and one concentration. Moreover there exists a relation between quantities
in both descriptions. It means, if it is possible to measure these three
quantities and one concentration then it would be possible to evaluate
contents fraction of remaining components.
This is the idea to build the device evaluating helium content. It occurs,
that three independent thermodynamic quantities (temperature T, pressure
p and sound speed ad) and oxygen concentration are easily measured.
Simple sensors, which measure these quantities, are available on the
market.
This paper is devoted to verification of this idea. In order to know
precisely the helium concentration before the measurement the method
was verified on the mixture of air and helium (helair). The constant
ratio of nitrogen and oxygen allows assessing the precision of the method.
The relation of helium concentration on sound speed and temperature
for helair was approximated by polynomials. The true values for this
approximation were taken from electronic thermodynamic tables, which
are available in a Promix software. The actual helium concentration
is evaluated based on oxygen sensor. The measurement is made at the
ambient pressure and this variable is not taken into account in evaluations.
A small laboratory stand was made in order to conduct the measurements.
The examined gas is introduced into a vertical cylinder under ambient
pressure. The sound speed is measured parallel to the vertical axis
of a cylinder. The ultrasonic distance sensor is placed on the top of
the cylinder. The temperature measurement was made by resistance sensor
Pt100. These two measurements are led into a PC through an A/D converter
board. The computer evaluates on-line the current value of helium based
on an approximate relation.
During the measurements, the examined gas was slowly introduced into
a cylinder. The evaluated values of helium concentration were monitored
until they stabilised. The time of stabilisation was due to the volume
of cylinder. The gas inlet was cut off. The value read in this moment
was taken as a measured value and compared with a true value obtained
by oxygen sensor. The helair mixes up to 30% of helium were examined.
The relative error was lower than 2%.
The undertaken experiments shown, that it is possible to make a concentration
sensor based on the sound speed measurement. In the future work, the
specialised devise will be made. It will work on microprocessor controller
without any PC.
LE CAPTEUR ULTRASONIQUE POUR LA MESURE DE LA TENEUR
DE L'HELIUM DANS LE MELANGE DES GAZ
Il est nécessaire de mesurer la teneur des constituant
dans le mélange ternaire contenant hélium, azote, oxygène, utilisé par
les plongeurs en exposition hyperbarique.
La difficulté principale à mesurer un gaz est un manque d'appareils
nécessaires qui permettent de mesurer la concentration d'hélium ou d'azote.
L'état thermodynamique du mélange ternaire est déterminé par quatre
grandeurs, par exemple : par deux variables thermodynamiques et par
la concentration de deux constituants ou par trois variables indépendantes
thermodynamiques et une concentration.
Il existe une relation entre ces deux descriptions. Ainsi, s'il est
possible de mesurer la température, la pression, la vitesse sonique
et une concentration dans le mélange, il sera possible d'évaluer la
teneurs des autres constituants.
C'est sur ce concept qu'a été réalisé un capteur pour la mesure de la
teneur en hélium du mélange. Par suite de cela, on a élaboré une méthode
qui permet d'évaluer le pourcentage d'hélium dans le mélange, fondée
sur la mesure de la température, de la pression, de la vitesse sonique
et de la concentration en oxygène. On peut réaliser facilement ces mesures
en utilisant les appareils commerciaux.
Cet article présente la validation expérimentale de ce concept de mesure.
La vérification a été menée pour le mélange hélium-air. Le rapport
constant de la teneur d'azote et d'oxygène permet d'estimer facilement
la précision de la méthode.
Pour conduire les recherches, on a construit un banc d'essais dans lequel
le gaz étudié est introduit dans un cylindre vertical sous la pression
atmosphérique. La vitesse sonique est mesurée le long de l'axe vertical
du cylindre à l'aide du capteur de distance qui est installé en haut
du cylindre. La mesure de la température est réalisée à l'aide du capteur
à résistance.
Les résultats des mesures sont transmis dans l'ordinateur par l'intermédiaire
de la carte du convertisseur analogique - digital.
L'ordinateur évalue la concentration d'hélium en mélange d'après un
polynome d'interpolation, dont les coefficients ont été identifiés sur
les valeurs réelles issues du logiciel Promix. Ces coefficients sont
calculés en fonction de la vitesse sonique et de la température.
La méthode proposée a été vérifiée en tenant compte de la connaissance
de la proportion dans le mélange hélium-air. Cette proportion a été
obtenue à l'aide du capteur de l'oxygène.
Des mélanges contenant jusqu'à 30% d'hélium ont été testés et l'erreur
relative de la mesure est restée inférieure à 2%.
|
|
|
A. Chisacof
5 september
16h40
(Abstract 76)
|
RENEW OF THE THERMAL ENERGY OF MULTIPHASE FLUIDS BY
COMPRESSION-CONDENSATION SYSTEM
|
A. Chisacof
Mechanical Engineering Faculty, University "Politehnica" of
Bucharest, 313, Spl. Independentei, RO- 77206 Bucharest, Romania
The large amount of used fluids which is released
every day in the atmosphere by the industrial plants and current
activity, could modify , in the medium to long term the local climate,
and this could, in different ways, strongly impact the human activities.
Concerning the emission from the industrial plants, especially from the
power plants and chemical layout, which use the important quantities of
fossil fuels and row materials, the important amounts of fluids
containing the vapour-gas mixture, having a low or moderate temperature
(in the range of 100°C to 250°C), are evacuated into the surroundings.
The limitation of this negative impact may by realised by an advanced
recovery of available heat of the multiphase mixture, and also by the
condensation of vapour components from gas-vapour system. In this mode a
part of the pollutant or of the reusable fluids, may be stored in the
special reservoirs or recovered, and reinserted in the technological
layout.
ln this paper is proposed a combined system for the
advanced recovery of heat and of the condensable components of
gas-vapour mixture. The proposed system consists in the initial
compression of the gas-vapour mixture in aim to increase the mean
temperature and the dew point of the medium. On this way, the level of
temperature during the heat transfer processes increases, the amount of
recovered heat increases too, due of the heat of condensation extracted
from the vapour phase. By this system we find the possibilities to use
its thermal energy by co-generation in the own plant, or in the other
cooling, refrigeration or heating systems. The dry gas obtained after
the condensation is expanded in a turbine. On this way a reduction of
external work input for compression is realised.
The paper presents the range of the efficiency of the
proposed system in function of the mixture composition, of the
compression ratio. The evolution of the recovered heat and of the mass
fraction of recovered liquid is presented, in function of initial
composition of gas-vapour mixture.
RENOUVELER L'ÉNERGIE THERMIQUE DES FLUIDES POLYPHASIQUES PAR UN SYSTÈME
DE COMPRESSION - CONDENSATION
Des grandes quantités de fluides sont évacués tous
les jours dans l'atmosphère soit par les usines, soit due aux
activités courantes, ce qui peut modifier le climat en ayant un fort
impact sur les activités humaines. En ce qui concerne les émissions
données par les grandes plates-formes industrielles, par les usines
chimiques et les centrales électriques, consommateurs des importantes
quantités de combustibles fossiles, les fumées évacuées dans
l'environnement contiennent des fractions élevées de vapeur d'eau à
basse ou moyenne température (entre 100°C et 250°C). Dans le but de
réaliser une limitation significative de cet impact négatif sur
l'environnement, il est nécessaire d'introduire dans la chaîne
industrielle des installations de récupération avancée de la chaleur
contenue dans les mélanges polyphasiques par la condensation de la
vapeur contenue par ceux-ci. De cette manière une partie de fluides
polluants est récupérée, et peut être stocké dans des réservoirs
ou réintroduite dans la chaîne technologique.
Dans ce travail on propose un système combiné pour la récupération
avancée de la chaleur des composants condensables du mélange
gaz-vapeur. Le système proposé utilise une compression initiale du
mélange gaz-vapeur, ce qui a comme but l'augmentation de la
température moyenne et de celle du point de rosée du milieu. Par
conséquent, on obtient un niveau élevé de la température du milieu
pendant le déroulement du processus de transfert thermique et d'autre
part, due à la condensation de la vapeur, la quantité de chaleur
récupérée augmente aussi. Le système proposé permet l'utilisation
de la chaleur par co-génération dans l'installation elle-même,
respectivement dans d'autre système de chauffage ou de réfrigération.
Les fumées sèches, issues de système de compression-condensation,
sont détendues dans une turbine. Par cette méthode on diminue l'apport
de l'extérieur de travail mécanique nécessaire à la compression du
mélange diminue.
Dans le travail sont données les valeurs de l'efficacité thermique du
système proposé en fonction de la composition du milieu et de taux de
compression. Aussi, sont présentées les évolutions de la chaleur
récupérée et de la fraction de liquide obtenue par condensation en
fonction de la composition du mélange.
|